Cross-orientation masking is speed invariant between ocular pathways but speed dependent within them.

نویسندگان

  • Tim S Meese
  • Daniel H Baker
چکیده

In human (D. H. Baker, T. S. Meese, & R. J. Summers, 2007b) and in cat (B. Li, M. R. Peterson, J. K. Thompson, T. Duong, & R. D. Freeman, 2005; F. Sengpiel & V. Vorobyov, 2005) there are at least two routes to cross-orientation suppression (XOS): a broadband, non-adaptable, monocular (within-eye) pathway and a more narrowband, adaptable interocular (between the eyes) pathway. We further characterized these two routes psychophysically by measuring the weight of suppression across spatio-temporal frequency for cross-oriented pairs of superimposed flickering Gabor patches. Masking functions were normalized to unmasked detection thresholds and fitted by a two-stage model of contrast gain control (T. S. Meese, M. A. Georgeson, & D. H. Baker, 2006) that was developed to accommodate XOS. The weight of monocular suppression was a power function of the scalar quantity 'speed' (temporal-frequency/spatial-frequency). This weight can be expressed as the ratio of non-oriented magno- and parvo-like mechanisms, permitting a fast-acting, early locus, as benefits the urgency for action associated with high retinal speeds. In contrast, dichoptic-masking functions superimposed. Overall, this (i) provides further evidence for dissociation between the two forms of XOS in humans, and (ii) indicates that the monocular and interocular varieties of XOS are space/time scale-dependent and scale-invariant, respectively. This suggests an image-processing role for interocular XOS that is tailored to natural image statistics-very different from that of the scale-dependent (speed-dependent) monocular variety.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cross-orientation masking in human color vision.

Detection of a Gabor pattern is impaired in the presence of a similar pattern of orthogonal orientation, a phenomenon known as cross-orientation masking (XOM). Here we investigate the role of color in cross-orientation masking. We measured contrast detection thresholds to horizontally oriented Gabors overlaid by similar Gabors of a different orientation. Red-green chromatic masking was compared...

متن کامل

Orientation bandwidths are invariant across spatiotemporal frequency after isotropic components are removed.

It is well established that mammalian visual cortex possesses a large proportion of orientation-selective neurons. Attempts to measure the bandwidth of these mechanisms psychophysically have yielded highly variable results ( approximately 6 degrees -180 degrees ). Two stimulus factors have been proposed to account for this variability: spatial and temporal frequency; with several studies indica...

متن کامل

Relationship between Pedestrians’ Speed, Density and Flow Rate of Crossings through Urban Intersections (Case Study: Rasht Metropolis) (RESEARCH NOTE)

Travels within the city are done in different ways, by vehicle or on foot. Thus, inevitably, a part of the travel is always done on foot. Since intersections as traffic nodes are determinant factor in transportation network capacity, any disruption in them leads to severe reduction in network capacity. Unfortunately, pedestrian behavior has received little attention in Iran. While this is a ver...

متن کامل

The dynamics of cross-orientation masking at monocular and interocular sites

We investigated the temporal properties of monocular and dichoptic cross-orientation masking (XOM) mediating suppressive or facilitatory cross-channel interactions between the neural detectors for the test and orthogonal mask stimuli. We measured the evolution of masking as a function of the duration of the test and mask stimuli to determine its time constant, and determined its dependence on s...

متن کامل

A common contrast pooling rule for suppression within and between the eyes.

Recent work has revealed multiple pathways for cross-orientation suppression in cat and human vision. In particular, ipsiocular and interocular pathways appear to assert their influence before binocular summation in human but have different (1) spatial tuning, (2) temporal dependencies, and (3) adaptation after-effects. Here we use mask components that fall outside the excitatory passband of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of vision

دوره 9 5  شماره 

صفحات  -

تاریخ انتشار 2009